ONTOLOGY OF SEMIOTIC-MATHEMATICAL CONSTRUCTIONS BY MUKHAMMAD IBN MUSA AL-KHOREZMI
Keywords:
ontology of mathematical objects, mathematical – abstract essence, many of the units, transcendental peace, dialogue of cultures, cognitive activityAbstract
The ontology of mathematical objects al-Khorezmi – his semioticmathematical constructions, it is the ontology build mind, who uses his dialectical ability. Mathematical objects are ideal entities, in the constructions of the medieval thinker as displaying sensually real things, becoming an independent existence. They have a certain set of properties, which becomes possible by strict logical methods. His mathematical objects apodictically, they can't be fixed with this new experience, they do not lend themselves to adjustment and have unempirically character. In the ontological context, any integer number, as a mathematical – abstract the essence of the thought of al-Khwarizmi in the Platonic context, as a sign and a symbol is needed to denote things in the description of the results of the cognitive activity related to the film world and the objective laws of society. The number is thought of al-Khwarizmi, not as the sum of the parts, and how many independent, unitary and indivisible units. The dismemberment of each of the numbers on many units allows you to define each of them as integrity. Al-Khwarizmi introduces the numbers existing in the transcendental world special. From the texts of the "Mathematical treatise" is clear, numbers are considered medieval mathematician as the representatives of the ideal in the sensual-visual being. Interpretation of number, which is represented by al- Khwarizmi, as many holistic indivisible units of the elements of the description of the results of cognitive activity, should be considered from the perspective of the dialogue of cultures, in the context of modern theories of logical-discursive constructions of the relations between signs Pierce. The number of al-Khwarizmi at the same time iconic sign, index, symbol.
References
1. Беркли Дж. Сочинения / Дж. Беркли. Аналитик, или Рассуждение, адресованное неверующему математику. – М., 1978.
2. Кантор Г. Труды по теории множеств / Г. Кантор. – М., 1985.
3. Карнап Р. Философские основания физики. Введение в философию науки / Р. Карнап. – М., 1971.
4. Мухаммад ибн Муса ал-Хорезми. Книга об индийском счёте // Математические трактаты. – Ташкент, 1983.
5. Мухаммад ибн Муса ал-Хорезми. Краткая книга об исчислении алгебры и алмукабалы // Математические трактаты. – Ташкент, 1983.
6. Мухаммад ибн Муса ал-Хорезми. Тригонометрические таблицы // Математические трактаты. – Ташкент, 1983.
7. Панфилов В. А. Философия математики Платона / В. А. Панфилов. – Днепропетровск, 1997.
8. Пирс Ч. С. Избранные философские произведения / Ч. С. Пирс. – М., 2000.
9. Платон. Государство / Платон. Соч. в 4-х т.– М., 1994. – Т. 3.
10. Платон. Парменид / Платон. Соч. в 4-х т.– М.,1993. – Т. 2.
11. Платон. Тимей. Собр. соч. в 4-х т. / Платон. – М., 1994. – Т. 3.
12. Эйлер Л. Исследования по баллистике / Л. Эйлер. – М., 1961.